Università di Catania
Seguici su
Cerca

AMBEATion

Analog/Mixed Signal Back End Design Automation based on Machine Learning and Artificial Intelligence Techniques
Classificazione: 
internazionali
Programma: 
Horizon 2020
Call / Bando: 
H2020-MSCA-RISE-2020
Settore ERC: 
Physical Sciences and Engineering
Ruolo Unict: 
Partner
Durata del progetto in mesi: 
48
Data inizio: 
Mercoledì, 1 Settembre 2021
Data fine: 
Domenica, 31 Agosto 2025
Costo totale: 
€ 257.600,00
Quota Unict: 
€ 59.800,00
Coordinatore: 
Politecnico di Torino (Italy)
Responsabile/i per Unict: 
Vittorio Romano
Dipartimenti e strutture coinvolte: 
Dipartimento di Matematica e Informatica
Altri partner: 

CESKE VYSOKE UCENI TECHNICKE V PRAZE (Czechia) - Synopsys Armenia CJSC (Armenia) - Synopsys Netherlands BV (Netherlands) - SNPS Portugal Unipessoal LDA (Portugal) - STMICROELECTRONICS Design and Application SRO (Czechia) - STMICROELECTRONICS SRL (Italy)CESKE VYSOKE UCENI TECHNICKE V PRAZE (Czechia) - Synopsys Armenia CJSC (Armenia) - Synopsys Netherlands BV (Netherlands) - SNPS Portugal Unipessoal LDA (Portugal) - STMICROELECTRONICS Design and Application SRO (Czechia) - STMICROELECTRONICS SRL (Italy)

Abstract

Mixed-signal integrated circuits have both analogue and digital circuits on a single semiconductor die. For analogue-centric designs, which integrate small to medium amounts of digital logic, physical designers often use analogue-on-top methodologies that rely on handmade flows. The electronic design automation industry is actively working on developing better design and verification methods ranging from integrated circuit synthesis to place and route, timing analysis, analogue design and simulation tools. The EU-funded AMBEATion project will use a holistic approach involving artificial intelligence techniques that should enhance the physical design automation of complex low-power integrated circuits. The project's activities will help increase designers' productivity in mixed-signal designs and reduce device production costs.